Difference between revisions of "BPI-Bit-S2"

From Banana Pi Wiki
Jump to: navigation, search
(MicroPython)
(MicroPython)
Line 331: Line 331:
 
The most obvious difference between it and the use of C programs to develop microcontrollers is that there is no need for lengthy compilation when verifying code.
 
The most obvious difference between it and the use of C programs to develop microcontrollers is that there is no need for lengthy compilation when verifying code.
  
Just transfer the "main.py" script file to the microcontroller, or enter commands directly through the REPL to control it, just like Python.
+
Using serial communication software, enter commands through the REPL to control the microcontroller, just like Python's REPL.
 +
 
 +
It is also possible to use some tools to upload a python script file to run inside the microcontroller.
  
 
Its implementation of Python3 includes the _thread library that supports multithreading and the asyncio library for writing concurrent code.
 
Its implementation of Python3 includes the _thread library that supports multithreading and the asyncio library for writing concurrent code.

Revision as of 02:51, 7 December 2022


About BPI-Bit-S2

BPI-Bit-S2 with ESP32-S2
BPI-Bit with ESP32
BPI-Leaf-S3 with ESP32-S3
BPI-AI Kendryte K210 RISC-V
BPI-UNO32 with ESP32 design

BPI-Bit-S2 banner.jpg

BPI-Bit-S2 development board is a successor to BPI-Bit, inheriting most of the hardware functions.

IO is compatible with micro:bit and can use most peripheral accessories of micro:bit.

Support Webduino, Arduino, MicroPython & CircuitPython programming environment suitable for STEAM education.

Key features

  • ESP32-S2
  • 5x5 RGB LED matrix
  • 1 buzzer
  • 1 thermistor sensor
  • 2 photosensitive sensors
  • 2 programmable keys,1 BOOT key,1 Reset key
  • Type-C USB interface
  • Size 5x5cm
  • The Goldfinger Edge Connector definition is fully compatible with Micro: Bit

Feature comparison

micro:bit vs BPI-Bit-S2
Product micro:bit V2.2X BPI-Bit-S2
MCU Nordic nRF52833 Espressif ESP32-S2
Frequency 64MHz 240MHz
RAM 128KB 320 KB
FlASH ROM 512KB 4096 KB
PSRAM None 2048 KB
Wireless Communication Bluetooth,microbit-radio WIFI, IEEE 802.11 b/g/n, 2.4Ghz
LED 25 red LEDs 25 WS2812-3535 RGB LEDs
Key 2 programmable keys, 1 RST key 2 programmable keys, 1 BOOT key, 1 RST key
Buzzer Yes Yes
Microphone Yes None
USB Socket Micro USB Type-C USB
USB interface chip nRF52833-QDAA or nRF52820-QDAA MCU chip built-in
Battery socket Yes None
IO 19 pins golden finger IO, alligator clip bayonet, support touch sensing 19 pins golden finger IO (compatible with micro:bit), alligator clip bayonet, support touch sensing
Motion sensor Yes None
Photosensitive sensor None 2
Thermistor sensor 1 on-core 1 on-board

Hardware interface

Bpi bit v2 interface en.jpg

BPI-Bit-S2 specification
MCU ESP32-S2FN4R2,Xtensa® 32 bit LX7 Single-Core Processer
Frequency 240MHz MAX
operating temperature -40℃~+85℃
ROM 128 KB
SRAM 320 KB
FLASH ROM 4 MB
PSRAM 2 MB
WIFI IEEE 802.11 b/g/n ,2.4Ghz
GPIO 19 available GPIO pins have been introduced
Peripheral functions ADC,TOUCH,PWM,SPI,I2C,I2S,Pulse counter, RMT,TWAI® Controller,SD/MMC,LCD_CAMERA
External crystal 40Mhz
Buzzer 8.5x8.5mm buzzer
LED 25 WS2812 rgb LED, single line GPIO control; 1 monochrome LED, controlled by GPIO0
Photosensitive sensor 2 photosensitive sensor
Thermistor sensor 1 thermistor sensor
IO 19 pins Goldfinger IO,19 pins contacts on the back
Key 2 programmable keys,1 BOOT key,1 Reset key
USB USB Type-C interface,full speed USB OTG,USB-ACM
Operating voltage 3.3V
Power USB Type-C input 5V,or Goldfinger IO input 3.3V power supply
Size 5 * 5 cm

On-board peripherals

Peripheral GPIO allocation and signal type
Photosensitive sensor(L) GPIO 12 Analog Input
Photosensitive sensor(R) GPIO 13 Analog Input
Thermistor sensor GPIO 14 Analog Input
Key A GPIO 38 Digital Input
Key B GPIO 33 Digital Input
Key BOOT GPIO 0 Digital Input
Buzzer GPIO 17 PWM(Digital Output)
RGB LEDs GPIO 18 Digital Output

5*5 RGB LED

BPI-Bit-S2 have 25 WS2812 full color RGB LED, single GPIO ontrol.

The three primary color pixels of each LED can achieve 8bit 256 level brightness display,

and achieve 16777216 color full color display,

scanning frequency is not less than 400Hz/s.

5*5 LED Sequential List
20 15 10 5 0
21 16 11 6 1
22 17 12 7 2
23 18 13 8 3
24 19 14 9 4

Goldfinger GPIO define

BPI-Bit-S2 Gold finger GPIO is defined to be compatible with Micro:Bit. GPIO expansion board accessories can be used with Micro: Bit.

Bpi bit v2 goldfinger.jpg

SPI,I2C
Function Pin Name GPIO Num
SPI_SCK P13 GPIO36
SPI_MISO P14 GPIO37
SPI_MOSI P15 GPIO35
SPI_CS P16 GPIO34
I2C_SCL P19 GPIO16
I2C_SDA P20 GPIO15

Power

BPI-Bit-S2 supports two power supply modes

1. Type-C USB:Use USB cable power supply, connect USB interface of computer or other 5V USB charger to power the development board.

2. Gold finger: At the bottom of the development board, the gold finger contains a power interface with both input and output functions. It uses 3.3V power supply, positive terminal is connected to 3V3, and negative terminal is connected to GND.

Software

Webduino

Webduino logo 1200x350.jpg

webduino online building block programming platform

webduino building block programming platform, Windows Installer

webduino online tutorials

MicroPython

Mircopython.png

MicroPython is a lean and efficient implementation of the Python 3 programming language that includes a small subset of the Python standard library and is optimised to run on microcontrollers and in constrained environments.

Crowdfunded and open sourced in 2013 by Damien P. George.

The most obvious difference between it and the use of C programs to develop microcontrollers is that there is no need for lengthy compilation when verifying code.

Using serial communication software, enter commands through the REPL to control the microcontroller, just like Python's REPL.

It is also possible to use some tools to upload a python script file to run inside the microcontroller.

Its implementation of Python3 includes the _thread library that supports multithreading and the asyncio library for writing concurrent code.

MicroPython aims to be as compatible with normal Python as possible to allow you to transfer code with ease from the desktop to a microcontroller or embedded system.

At the same time it also has some libraries specific for microcontrollers in order to take full advantage of the hardware features inside the microcontroller chip, such as timers, hardware interrupts, WiFi, etc., depending on the specific hardware.

While having the above features, it is compact enough to fit and run within just 256k of code space and 16k of RAM.

If you know Python you already know MicroPython.

On the other hand, the more you learn about MicroPython the better you become at Python.

Arduino

Arduino logo 1200x350.png

Arduino 是一个开源嵌入式软硬件开发平台,用来供用户制作可交互式的嵌入式项目。

Preparing...

Documents

BPI-Bit Lite schematic